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Abstract: Environment sensoring is always a limelight in automatic driving. We propose a novel drivable area auto-
labelling method based on LiDAR and monocular camera, which constructs a elevation map, calculates drivablity of
each grid and gets continuous drivable areas via clustering and vertical growing. Finally, We prove the effectiveness
of our labels with a classic network training framework on KITTI dataset.
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1 Introduction

Real-time sensing of local environment is the
basis of autonomous navigation of robot. Elevation
map is a common description of local environment,
which can be constructed with a variety of robot sen-
sors and updated with the change of the position and
pose of a robot. However, the performance of exist-
ing methods of constructing elevation map based on
vision have many redundant intermediate processes.
Our research contributes to accelerating it through
deep learning, improving the efficiency and perfor-
mance of drivable area detection.

In recent years, computer vision has been boom-
ing with the development of deep neural network.
Many network frameworks, such as FCN(Long et al.,
2015) and U-Net(Ronneberger et al., 2015), rely-
ing on numerous accurate labelled data, have made
significant progress in the semantic segmentation
of road drivable areas. However, collecting data
and labelling is rather time-consuming and labori-

∗ Joint first authors
‡ Corresponding author

ORCID: Chengrui Zhu, https://orcid.org/0000-0002-6382-6569

ous. To tackle this problem, we propose a low-cost
and accurate method for constructing effective train-
ing datasets, named Drivable Area Label Generation
Based on Elevation Map and Clustering.

Our method consists of two parts. For the first
part, it constructs elevation maps by point clouds
from LiDAR, and the drivability of each grid is cal-
culated by both region growing based on height, the
surface normal and neighbor height deviation. Then,
it projects drivability information to the correspond-
ing images through intrinsics and extrinsics of the
camera. For the second part, it uses hierarchical
clustering for significantly undrivable areas, and ver-
tical growing for significantly drivable areas. Finally
the experimental results proved its effectiveness for
improving the network performance.

2 Related works

In the field of drivable area detection, there have
been many effective methods, including traditional,
supervised and semi-supervised ones. These meth-
ods can also be divided into methods relying only on
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vision, only on LiDAR or combining both. Some of
the camera-based methods rely on global road pri-
ori hypothesis, such as road boundaries(Yuan et al.,
2015)(Aly, 2008), lane lines, and vanishing points
(Kong et al., 2010)(Alvarez et al., 2014). How-
ever, road conditions are extremely complicated and
somtimes violate those priori hypothesis, which un-
dermines their portablity. In addition, visual in-
formation is easily influenced by light conditions,
and vision-based algorithms almost loses efficiency in
dark environments. A Laser-based algorithm (Calt-
agirone et al., 2017) uses the top view of the LiDAR
point cloud to train a FCN network to acquire a
depth map, but the sparsity of LiDAR also limits the
effect of the method. (Caltagirone et al., 2019) uses
LiDAR and visual images to train a FCN network.
By cross-fusing point clouds and corresponding RGB
images in the training process, network learns more
abundant information and gets a better result on
segmentation. However, a large number of manual
labelled images are still required in the training of
the network.

Therefore, automatically labelling methods are
introduced to training segmentic segmentation net-
works. (Laddha et al., 2016) uses OpenStreetMap
and location sensors to cooperate in drivable area
labelling, and detects dynamic obstacles on a actual
road by training a CNN network, ineffective in lack
of accurate map data. (Barnes et al., 2017) proposes
a weak-supervised training method, which uses a vi-
sual odometer to perceive the forward path, projects
LiDAR data onto the image and uses a top-down
search method to get the obstacle border, with poor
detection efficiency in the scene of road intersection.
In (Gao et al., 2019), 3D LiDAR data, the real trajec-
tory from GPS, and a special network framework is
designed for the ambiguous areas on off-road roads,
where accurate GPS positioning necessitates. (Pan
et al., 2021) proposes an elevation mapping system
and integrates traversability analysis into simulta-
neous localization and mapping (SLAM), which de-
creases the computation cost of obstacle awareness.

3 Methodology

3.1 Grid drivability calculation

In this section, we construct a elevation map
and calculate the drivability of each grid of that.

Fig. 1 Region growing in 3D point of view, where
drivable grids are marked green.

First, GPU Accelerated Elevation Map Construction
(Pan et al., 2019) is adopted to construct a local
elevation map, where surface normal and neighbor
height deviation are calculated according to equation
1 of each grid:

ni = min
x
||(Qi − 1kp

T
i )ni||2

Hd = |hP(x,y)
− h̄|

(1)

A novel approach though it is, it has a poor detection
effect on certain obstacles such as lawn and steps at
the sides of the road, thus the drivable areas are
arbitrary to some extent. Above method will be
called the control method below, and on the basis
of this, we introduce region growing to generate the
drivable area, in order to obtain conservative drivable
areas.

Region growing(Adams and Bischof, 1994) is a
method of aggregating pixels and subregions into
larger regions according to predefined criterion. It
starts from a group of seed points, adds their neigh-
bor regions with similar properties to the next gen-
eration of seed points, and ends if seed points can’t
expand any more. In our method, the height of each
grid is regarded as the criteria of growing.

In our method, it’s assumed that the current
position of the car is always drivable, so we set cur-
rent position as initial seeds, and set the growing
threshold to 0.05m. By this way a more conser-
vative drivability judgement is made compared with
the control method, meanwhile capable to accurately
detect grassland, small steps, etc., which is clearly
shown in Fig. 1, Moreover, due to the significant
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Fig. 2 The first row is the projected points with drivability, the second is the original visual image, the third
uses both methods, while the fourth only uses a complex of surface normal and neighbor height deviation. In
the images, green, red and blue denotes drivable, undrivable and ambiguous separately. It can be seen that
region growing and KNN significantly improve the quality of labels.

noise of LiDAR height measurement in the distance
which probably exceeds the threshold, region grow-
ing is limited to the vicinity. In view of this, a flexible
threshold is set with respect to the distance to the
area.

To take advantage of the characteristic of sur-
face normal and neighbor height deviation, which is
obstacle perception in advance brought out by dif-
ferential prediction effect, we fuse the two methods
by the following strategy. For every grid:

• if drivable for both methods, it’s drivable;

• if undrivable for region growing, it’s undrivable;

• if undrivable for the weighted method but driv-
able for region growing, it will finally be deter-
mined by KNN (k-nearest neighbor).

3.2 Projective transformation

In this section, drivability information is pro-
jected from the elevation map to the 2D image plane.
Given coordinates of all grids on elevation maps in
the map frame and their drivability, via the trans-
formation matrix from the map frame to the sensor
frame, drivability is projected to the LiDAR coor-
dinate system. With intrinsics, extrinsics and dis-
tortion coefficients, drivability is shown as discrete
points in Fig. 2. Equation 2 demostrates the projec-

tion relations:

X = [x, y, z, 1]T, Y = [x, y, 1]T

Y = Prect ·Rrect · (R|T )camvelo ·X
(2)

where X denotes 3D homogeneous coordinates, Y
denotes 2D homogeneous coordinates on the image
plane, (R|T )camvelo denotes the transformation matrix
from velodyne to camera, Rrect denotes the distor-
tion rectification matrix and Prect denotes the pro-
jection matrix.

3.3 Area aggregation

In this section, we aggregate discrete drivabil-
ity projections into continuous drivable or undriv-
able areas, thus append a pixel-level drivability label
layer to a visual image, which can be called driv-
ability image. A typical drivability image generated
by our method contains three types of labels: signifi-
cantly drivable, significantly undrivable and ambigu-
ous. The ambiguous areas are somewhere hard to
judge its drivablity, which typically lies in the vicin-
ity of the edges of drivable and undrivable areas. In
the network training process, the ambiguous areas
are ignored instead of regarded as the third class.

In typical urban road environments, there are
obstacles of various shapes around the vehicle, the
sum of which is the so-called undrivable area. Given
the undrivable projections, our solution is to cluster
all the projections and then extract the boundary of
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Fig. 3 Clustering and vertical growing result instance, in which obstacles are divided into two clusters: the
architecture (in purple) and the car (in red) and encircled separately.

each cluster separately. Ideally, the points of each
cluster belong to different obstacles, the outlines of
which are partitioned by the corresponding bound-
ary of projections.

Therefore, we combine Hierarchical Cluster-
ing (Johnson, 1967) and the circumscribed polygon
boundary extraction. Compared with other cluster-
ing methods such as K-means and Gaussian mix-
ture models etc., which mainly focus on inner-class
similarities and inter-class discrepancies, hierarchical
clustering can flexibly select the clustering criteria to
cater to various clustering purposes. In drivable area
segmentation, we concentrate more on the continuity
of projections. Therefore, the inter-class distance is
defined as the shortest distance between two points
respectively belonging to two clusters, i.e.

Dist(X,Y ) = min
x∈X,y∈Y

dist(x, y) (3)

where X and Y denote two clusters; x and y de-
note two points respectively belonging to X and Y .
This clustering method is also called Single-linkage
Agglomerative Clustering (Sibson, 1973). Then De-
launay triangulation(Zhigeng et al., 1996) is adopted
to extract the circumscribed polygon of projections
for each cluster, and the areas within the polygons is
regarded undrivable. A cluster with few projections
inside can be filtered because it’s presumably a noise
spot.

Compared with the acquisition of the undriv-
able areas, a more conservative method vertical grow-
ing method for drivable areas. A distinct feature of
drivable areas is that they always extends from the
current position to the nearest obstacle, and when
reflected on visual images, they grow vertically from
the bottom to the farthest drivable projection below

undrivable projections. The drivable areas generated
in this way never overlap with the undrivable areas.

In practice, we divide the image vertically into
several columns, and adopt vertical growing for each
column. Specifically, for each column of images, we
traverse the projections in order from bottom to top,
and stops if two neighbor projections are far apart
(not continuous) or it’s too close to the undrivable
area (not significant). Thus, we have acquired a
sequence of the pixel heights of the drivable areas
in each column of images and adopt filtering and
interpolation if necessary (median filtering and linear
interpolation in the experiment). In addition, we
truncates the drivable area where the pixel height
is trivial. Finally, the continuous boundaries of the
significantly drivable areas are acquired.

In our method, lots of restrictions are impose
to the significant drivable area, which ensures its
continuity and accuracy. That contributes to im-
provement of precision but meanwhile deterioration
of recall. As precision and recall are usually seen as a
trade-off and precision is much more significant than
recall in this case, it’s reasonable to sacrifice recall
appropriately.

4 Experiments

4.1 Network training

‘With the control method and our method sep-
arately, we generate two group of datasets with the
image number of 56, 112, 224 and 336 as training
set. Moreover, KITTI Pixel-level Semantic Segmen-
tation Benchmark(Geiger et al., 2012) is splitted into
112, 60 and 28 images which is added respectively to
training, validation and test sets. It’s worth mention-
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Table 1 Experiment result comparision

Generated Control group(%) Our Method(%)
Label Manual Selection of Basic Labelling Automatic Selection with Improvements

Number Precision Recall Accuracy IoU Precision Recall Accuracy IoU
0 80.5 93.1 93.3 76.0 80.5 93.1 93.3 76.0
56 87.2 87.4 94.2 77.4 84.0 90.1 93.8 76.9
112 89.4 87.0 94.7 78.9 88.1 88.0 94.6 78.6
224 89.3 86.7 94.6 78.6 86.2 88.9 94.2 77.8
336 89.2 85.1 94.3 77.2 85.6 87.0 93.7 75.9

ing that the datasets generated the control method
is manually selected because most of the labels are
rough and erroneous.

Based on KITTI Raw Data, we can generate far
more datasets than we need, so a fairly stringent fil-
tering strategy is made to ensure the high quality of
the labels. In practice, we set the upper limit of am-
biguous areas and the lower limit of drivable and un-
drivable areas. Since only significant labelled areas
are utilized during training, the generated dataset
has only a good effect on the neural network if the
correctness of the vast majority of labels is ensured.
This explains why precision is fairly important.

We use the classic FCN8s neural network and
commonly used image augmentation methods for
training, such as random horizontal flipping, ran-
dom resizing and cropping, color jittering, etc.; and
use the Adam optimizer with weight decay for opti-
mization. Then select the batch which performs best
in the validation set for testing, and finally compare
the experimental results.

In order to evaluate the performance of the
network based on different datasets, the following
4 quantitative indicators are calculated: precision,
recall, accuracy and IoU (Intersection over Union).
The results are shown in Table 1.

4.2 Results and analysis

Based on a huge amount of data, after manual
selection (3000 images per hour), datasets generated
from the control method generally has a positive ef-
fect on training. The IoU of test set increases first
and then decreases with the increasing number of
generated data added. In addition, because the driv-
able area labelling of the manually selected generated
data set is more conservative than accurate labels,
accuracy increases significantly, while the recall rate
decreases slightly. This shows that the automatic

labelling algorithm alleviates network’s dependence
on accurate manually labelled datasets, but gener-
ates poor labels in average and still requires manual
selection.

In the combined dataset fully automatically gen-
erated by the improved method, the indicators varies
similarly to control group with respect to the amount
of added generated dataset. And the optimal result
of IoU (78.6) can be comparable to that of control
group (78.9). As expected, the recall of the test
results decreased less because of fewer label errors,
yet the accuracy improved less correspondingly. The
result demostrates that the improved method can
generate labels whose style similar to that of manual
labels, meanwhile greatly reducing the cost of man-
ual labelling and improves the segmentation perfor-
mance of the network based on insufficient accurate
labels.

5 Conclusion

We propose a drivable area automatically la-
belling road drivablity labels based on elevation map
from LiDAR point clouds, clustering and vertical
growing. As a further improvement, we design a
label filtering method to improve the quality of la-
bels. Through network training, the effectiveness of
our method is proved. Compared with manually la-
belled datasets, our method is completely automatic
and has a negligible cost. For further work, we will
further research the influence of noisy labels on train-
ing, to utilize auto-generated labels more wisely.
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